Fraktál Newton

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores
...

Vznik

John Hubbard přednášel svým studentům na jedné univerzitě základy diferenciálního a integrálního počtu. Aby nebyl výklad příliš nudný, zpestřoval jej občas zajímavými otázkami a příklady. +more Jednou vysvětloval výpočet kořenů polynomu Newtonovu metodou (metoda tečen). Tato metoda spočívá v postupném zpřesňování výsledku. Na začátku si zvolíte náhodné číslo (bod na grafu) a spočítáte derivaci funkce v tomto bodě. Tato derivace určuje směrnici tečny, která by měla protnout osu x1. V bodě, kde ji tečna protne, uděláte kolmici, která protne graf funkce. A v bodě, kde kolmice protíná graf, zase spočítáte derivaci a proces opakujete od začátku. Takto se postupně blížíte ke kořeni funkce. Jenže když má funkce víc kořenů, ke kterému se výpočet vydá. V reálném oboru není zase tak velký problém určit „cílový“ kořen. Jenže jak je tomu v oboru komplexních čísel.

Tuto otázku položil Hubbard také svým studentům. Původně si myslel, že půjde o triviální záležitost, ale nebylo tomu tak. +more Představa všech studentů byla taková, že se komplexní rovina rozdělí na několik ploch, které budou jednoznačně odděleny a určí ke kterému řešení bude výpočet konvergovat. Jenže tak se to nestalo. K velikému překvapení všech se na rozhraní ploch začaly objevovat záhadné obrazce. V jednu chvíli se zdálo, že řešením bude jeden z kořenů, když náhle začalo směřovat ke kořenu zcela vzdálenému, který nikdo nečekal.

Hubbard začal intenzivně zkoumat velice jednoduchou rovnici x3 - 1 = 0. V oboru reálných čísel má jen jedno řešení. +more V komplexním oboru jsou řešení ovšem celkem tři. Hubbard si zobrazil na počítači rovinu komplexních čísel a barevně označil body, které konvergují vždy k určitému kořenu. Tak mu vznikl trojbarevný obrázek, který měl na rozhraních velice zajímavé obrazce. Vypadalo to jako pohoří, ze kterého pustíme míč a ten se skutálí do údolí, které je řešením. Nečekaně se ovšem stalo, že na rozhraní dvou barevných ploch se po zvětšení objevila i barva třetí. Míč by tedy zvolil dlouhou klikatou cestu a dokutálel se k nejvzdálenějšímu řešení.

Tato rovnice se stala základní pro fraktál označovaný jako Newton. Podobně jako u ostatních fraktálů zde nalezneme mnoho zajímavých vlastností. +more Tento fraktál je samozřejmě soběpodobný, takže po zmenšení nalezneme zase podobné motivy jako v celém fraktálu. [[Soubor:Newton animation s. gif|vpravo|náhled|Fraktál ve tvaru x^n-1 kde n postupně roste od 1 do 6 (po 0. 05) [černá místa nekonvergují ke kořenu]]].

Související články

Newtonova metoda tečen

Externí odkazy

Newtonova iterační metoda pro řešení rovnic v komplexní rovině: http://kitnarfovo.misto.cz/_MAIL_/htm/nm/nm.htm

Kategorie:Fraktály Kategorie:Komplexní analýza

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top