Identická relace
Author
Albert FloresIdentická relace (někdy také prostě identita) na množině X \,\! , označovaná obvykle id_X \,\!, je binární relace, pro kterou platí:
:id_X = \{(a,a); a \isin X \}
Zjednodušeně řečeno: v identické relaci je každý prvek podkladové množiny obsažen pouze jednou - a to sám se sebou.
Příklady a vlastnosti
Relace = je identita na přirozených, celých, racionálních, reálných i komplexních číslech. * Relace < není identita na přirozených číslech, protože 1
Identita jako nejmenší ekvivalence
Identita id_X \,\. je ekvivalence na množině X \,\. +more - je reflexivní, symetrická i tranzitivní. Navíc pokud na množině všech ekvivalencí na X \,\. definujeme uspořádání podle zjemnění rozkladu, pak je id_X \,\. nejmenší prvek množiny všech ekvivalencí na X \,\. vzhledem k tomuto uspořádání (identitu již nelze dále zjemnit, protože každá její rozkladová množina má pouze jeden prvek).
Identita jako nejmenší neostré uspořádání
Identita je id_X \,\. je také neostré uspořádání množiny X \,\. +more Není to nijak zajímavé uspořádání - žádné dva různé prvky nejsou porovnatelné. Jedná se ale opět o nejmenší prvek - tentokrát množiny všech neostrých uspořádání množiny X \,\.