Sierpińského koberec
Technology
12 hours ago
8
4
2
Author
Albert FloresSierpińského koberec Sierpińského koberec je fraktální útvar vytvořený rekurzivním odstraňováním čtverců z plochy. Své jméno dostal podle svého objevitele Wacława Sierpińského, který ho poprvé popsal v roce 1916.
Tento fraktál je zobecněním Cantorovy množiny do dvou rozměrů.
Získáme ho tak, že ze čtverce odstraníme 1/9 obsahu, a ze zbylých 8 částí z nichž každá má obsah 1/9 původního obsahu stejným způsobem odstraníme 1/9 jejich obsahu. Tento postup je opakován donekonečna.
Logickou úvahou, limitami nebo výpočtem pomocí součtu nekonečných řad můžeme zjistit, že Sierpińského koberec má nulový obsah.
Sierpińského koberec má fraktální dimenzi rovnou \tfrac {\ln8}{\ln3} \approx 1,8928.
Prostorovým zobecněním je Mengerova houba.
Odkazy
Externí odkazy
Jeroným Klimeš: [url=http://klimes. mysteria. +morecz/inspiro/fraktal_koberec_cz. htm]Sierpinski carpet neboli koberec u Sierpinských[/url]. Variace na známý fraktál řešená pomocí modulární aritmetiky a zbytkových tříd.