Sierpińského trojúhelník
Author
Albert FloresSierpińského trojúhelník (přiblížení 7. rekurze)
Sierpińského trojúhelník je fraktální útvar vytvořený rekurzivním vykreslováním rovnostranných trojúhelníků. Jmenuje se tak podle Wacława Sierpińského, polského matematika, který ho v roce 1915 poprvé popsal.
Platí, že pro každý bod Sierpińského trojúhelníku je bodem útvaru i geometrický střed tohoto bodu a (libovolného) vrcholu Sierpińského trojúhelníku.
Sierpińského trojúhelník má fraktální dimenzi rovnou \tfrac {\ln3}{\ln2} \approx 1,58496.
Prostorovým zobecněním je tzv. Mengerova-Sierpińského houba.
Sierpińského trojúhelník vzniká rekurzivním postupem, kdy se z rovnostranného trojúhelníku odstraní středový trojúhelník, tvořený spojnicemi středů stran. Postup se opakuje u každého ze zbývajících tří rohových trojúhelníků.
Alternativní postup tvorby
Podobu Sierpińského trojúhelníku po konečném počtu rekurzivních kroků lze získat vybarvením trojúhelníků v předpřipravené síti o požadované velikosti. V síti uvažujeme pouze trojúhelníky orientované vrcholem nahoru. +more První buňka na vrcholu trojúhelníku je obarvená. V další řadě se pro každou buňku kontroluje, zda v buňkách nad ní (vpravo nad, vlevo nad) je právě jedna z těchto buněk obarvená, v takovém případě bude testovaná buňka také mít barvu. Pokud ne, zůstane bez barvy.
Související články
Externí odkazy
[url=http://www. root. +morecz/clanky/zelvi-grafika-a-rekurze/]Kreslení Sierpińského trojúhelníku želví grafikou[/url] * [url=http://ivankuckir. blogspot. com/2010/11/sierpinskeho-trojuhelnik-ve-flashi. html]On-line vykreslování trojúhelníků ve Adobe Flash s kódem[/url].
Kategorie:Fraktály Kategorie:Křivky Kategorie:Topologie Kategorie:Trojúhelník