Osmičková soustava

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Osmičková (oktalová, oktální) soustava je číselná soustava o základu 8, která (v tradičním zápisu) může obsahovat cifry 0, 1, 2, 3, 4, 5, 6 a 7.

Díky tomu, že je oktální soustava snadno převeditelná do binární soustavy (8 je mocninou dvojky), často se používala v oblasti informatiky. Příkladem může být nastavení přístupových práv v operačních systémech unixového typu.

Převody čísel

Převod z desítkové do osmičkové soustavy

Metoda postupného dělení 8 je používána pro převod celých čísel v desítkové soustavě do soustavy osmičkové a spočívá v postupném dělení číslem 8. Původní číslo celočíselně vydělíme číslem 8 a zvlášť si zapisujeme zbytky po tomto dělení - označme je jako Zb_i, kde i značí pořadí zbytku. +more Vzniklý podíl dále dělíme číslem 8 (a zapisujeme si zbytky po dělení) dokud podíl není roven nule. Po skončení dělení dostaneme číslo v osmičkové soustavě zapsáním pořadí zbytků v opačném pořadí (protože číslo zapisujeme zprava doleva, ale čteme zleva doprava).

Například: Mějme číslo 900 v desítkové soustavě, které chceme převést do osmičkové soustavy. Nechť symbol div znamená celočíselné dělení.

900 div 8 = 112 a Zb_0 = 4

112 div 8 = 14 a Zb_1 = 0

14 div 8 = 1 a Zb_2 = 6

1 div 8 = 0 a Zb_3 = 1

Zbytky po dělení zapisujeme zprava doleva - avšak číslo čteme zleva doprava. (Pořadí zbytků po dělení je 4, 0, 6, 1 ale zapisujeme je v pořadí 1, 6, 0, 4)

Výsledkem je: (900)10 = (1604)8

Vybrané zlomky v osmičkové soustavě

:(1/2)10 = (0,4)8 :(1/4)10 = (0,2)8 :(1/8)10 = (0,1)8 :(1/10)10 = (0,06341634163416341...)8 :(1/16)10 = (0,04)8 :(1/20)10 = (0,0314631463146...)8

Převod z osmičkové do desítkové soustavy

Převod z osmičkové soustavy do desítkové je konkrétním použitím obecného vztahu \sum_{i=0}^n \left( a_i\times B^i \right).

Například: Mějme číslo 2007 v osmičkové soustavě, které chceme převést do soustavy desítkové. Úpravou obecného vztahu do podoby \sum_{i=0}^n \left( a_i\times 8^i \right) získáváme efektivní nástroj pro převod. +more (Opět pamatujme že číslo je zapsáno zprava doleva).

\sum_{i=0}^n \left( a_i\times 8^i \right) = 7 \times 8^0 + 0 \times 8^1 + 0 \times 8^2 + 2 \times 8^3 = 1031

Výsledkem je: (2007)8 = (1031)10

Převod z osmičkové do binární soustavy

Převod mezi těmito soustavami je značně ulehčen díky tomu, že číslo 8 je mocninou dvojky. Jednoduše nahradíme každou číslici za její binární reprezentaci. +more Pro převod můžeme s výhodou použít následující tabulky:.

align = "center" |Osmičková číslicealign = "center" |0align = "center" |1align = "center" |2align = "center" |3align = "center" |4align = "center" |5align = "center" |6align = "center" |7
align = "center" |Binární reprezentace000001010011100101110111

Například: Převod čísla (1572)8 do dvojkové (binární) soustavy.

1 = 001

5 = 101

7 = 111

2 = 010

Výsledkem je: (1572)8 = (001101111010)2

Převod z binární do osmičkové soustavy

Převod je opět poměrně jednoduchý - zápis čísla v binární soustavě rozdělíme na skupiny po 3 bitech a pomocí předchozí tabulky převedeme na číslo v osmičkové soustavě.

Například: Převod čísla (011 111 011 000)2 do osmičkové soustavy.

011 = 3

111 = 7

011 = 3

000 = 0

Výsledkem je: (011 111 011 000)2 = (3730)8

Převod z osmičkové do hexadecimální soustavy

Převod mezi těmito dvěma soustavami je řešen pomocí 2 kroků. V prvním kroku převedeme číslo v osmičkové soustavě do soustavy binární, které ve druhém kroku převedeme do soustavy hexadecimální.

Převod z hexadecimální do osmičkové soustavy

Tento převod je také řešen pomocí 2 kroků, kdy v prvním kroku převedeme číslo v hexadecimální soustavě do soustavy binární a následně provedeme převod z binární do osmičkové soustavy.

Srovnání číselných soustav

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top