Elektronový mikroskop

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Mikroskop Siemens, 1973 Elektronový mikroskop je obdoba světelného mikroskopu, ve kterém jsou ale fotony nahrazeny elektrony a skleněné čočky elektromagnetickými čočkami. Elektromagnetická čočka je v podstatě cívka, která vytváří vhodně tvarované magnetické pole. Jedním ze základních parametrů všech mikroskopů je jejich mezní rozlišovací schopnost. Protože mezní rozlišovací schopnost je úměrná vlnové délce použitého záření a elektrony mají podstatně kratší vlnovou délku (viz vlnové vlastnosti elektronu) než má viditelné světlo, má elektronový mikroskop mnohem vyšší rozlišovací schopnost a může tak dosáhnout mnohem vyššího efektivního zvětšení (až 1 000 000:1) než světelný mikroskop.

Mezi největší výrobce a exportéry elektronových mikroskopů na světě patří Česko, zejména brněnské firmy Tescan, FEI, Delong Instruments a Ústav přístrojovové techniky AVČR pokrývají asi třetinu světové produkce elektronových mikroskopů.

...
...
...

Typy

transmisní elektronový mikroskop (TEM) - zobrazení vnitřní struktury vzorku pomocí prošlých elektronů (TE). Urychlovací napětí elektronů je 100-400 kV. +more První TEM vynalezl a zkonstruoval Ernst Ruska v roce 1931 a v roce 1986 získal za svůj objev Nobelovu cenu. TEM byl první komerčně vyráběný typ elektronového mikroskopu. Lze se setkat i s názvem prozařovací elektronový mikroskop. Slovo „transmisní“ v názvu je odvozeno z toho, že elektrony procházejí skrz vzorek a až pak jsou detekovány. Z toho plyne, že a) urychlovací napětí musí být dostatečně vysoké (srovnej se SEM), aby elektrony měly dostatečnou energii na průcho vzorkem a b) je nutné používat velmi tenké vzorky (10-500 nm). * rastrovací elektronový mikroskop (SEM) - zobrazení povrchu vzorku nejčastěji pomocí sekundárních elektronů (SE) a/nebo zpětně odražených elektronů (BSE). Urychlovací napětí elektronů je nejčastěji 0,1-30 kV. První SEM byl zkonstruován V. K. Zvorykinem a kol. v roce 1942. Lze se setkat i s názvy řádkovací nebo skenovací elektronový mikroskop. Slovo „rastrovací“ v názvu je odvozeno z toho, že elektronový svazek se pohybuje po vzorku v řádkovém rastru a výsledný obraz se vytváří postupným skenováním. Jednoduchá příprava vzorků a snadná interpretace obrazu (na rozdíl od TEM) činí SEM velmi populárním a rozšířeným.

Výše uvedené rozdělení na dva základní typy je sice názorné, představuje ale v jistém smyslu zjednodušení. Celkem běžně se lze setkat např. +more s rastrovacím TEM (tzv. STEM) nebo detektorem prošlých elektronů instalovaným na SEM.

Detektory SEM

SE detektor - detektor sekundárních elektronů. * BSE detektor - detektor zpětně odražených elektronů. +more * TE detektor - detektor prošlých elektronů. * EDS / WDS- detekce charakteristického RTG záření, používá se pro analýzu chemického složení vzorků. Metoda dokáže zjistit jaké prvky a v jakém množství se nacházejí ve vzorku. * EBSD - difrakce zpětně odražených elektronů, používá se pro krystalografickou analýzu vzorků. Metoda dokáže přesně zjistit orientaci krystalové mřížky ve studovaném vzorku. * CL detektor - detektor katodoluminiscence, tedy světla (ultrafialového-viditelného-infračerveného) emitovaného ze vzorku.

Rozlišovací schopnost

Zlato na uhlíkovém vzorku Rozlišení je mnohem důležitějším parametrem mikroskopu než jeho zvětšení. +more Pokud mikroskop nemá dostatečnou rozlišovací schopnost, nevede pouhé zvětšování k další informaci. Rozlišení vždy závisí na nastavení mikroskopu (např. urychlovacím napětí) a detekovaném signálu (např. SE). Je proto vhodné vždy uvést, za jakých podmínek bylo rozlišení dosaženo. Rozlišovací schopnost se demonstruje pomocí vhodných preparátů. U SEM je to nejčastěji zlato na uhlíkové podložce. Zlato a uhlík jsou voleny záměrně pro dosažení maximálního kontrastu obrazu způsobeného značným rozdílem v atomových číslech jednotlivých prvků. Následující obrázek byl vytvořen při urychlovacím napětí 15 kV a zvětšení 300 000×. Dosažené rozlišení je přibližně 1,2 nm. Nejmodernější přístroje dnešní doby jsou schopny dosáhnout rozlišení i pod 0,5 nm ale za cenu jistých omezení, např. vzorky musejí být velmi malé.

U TEM se rozlišení demonstruje například pomocí tenké fólie vhodně orientovaného krystalu křemíku. Rozlišení TEM s urychlovacím napětím 200 kV se pohybuje okolo 0,2 nm v závislosti na pracovním módu a použitém detektoru. +more To je hodnota zhruba o řád lepší než pro SEM.

Využití

hlava mravence v SEM Bez nadsázky lze říci, že elektronové mikroskopy patří mezi nejvšestrannější přístroje pro pohled do mikrosvěta. +more Využívají se v mnoha oblastech jako např. v materiálovém výzkumu nebo v biologických aplikacích. Mohou poskytnout komplexní informaci o mikrostruktuře, chemickém složení a o mnoha dalších vlastnostech zkoumaného vzorku. Rastrovací elektronové mikroskopy se využívají pro zobrazení a analýzu povrchů téměř libovolně velkých vzorků (je-li dostatečně velká vakuová komora pro jejich umístění). Transmisní elektronové mikroskopy nacházejí využití při pozorování a analýze vnitřní struktury vzorku a pro zobrazení jednotlivých atomů. Nutnou podmínkou pro použití TEM je, že vzorek musí být dostatečně tenký (10-500 nm) aby jím svazek elektronů prošel. Zjednodušeně lze říci, že TEM vidí více než SEM, ale za cenu složitější přípravy vzorků a obtížnější interpretace získaných snímků.

Odkazy

Reference

Literatura

Williams D. B. +more, Carter C. B. 1996: Transmission Electron Microscopy, Plenum Press. New York * Dawes C. J. 1988: Introduction to Biological Electron Microscopy: Theory and Techniques, Ladd Research Industries, Inc. Publisher Burlington, Vermont * Kalina T. , Pokorný V. 1981: Základy elektronové mikroskopie pro biology. Univerzita Karlova, Praha * Reimer L. , Scanning Electron Microscopy, 2nd ed. , Springer, Berlin Heidelbeg.

Související články

Transmisní elektronový mikroskop * Rastrovací elektronový mikroskop * Mikroskop

Externí odkazy

Kategorie:Elektrické přístroje Kategorie:Mikroskopy

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top