Mortonův rozklad
Author
Albert FloresPrvní čtyři iterace Mortonova rozkladu Mortonův rozklad dvourozměrné matice 8×8 Mortonův rozklad (též Mortonova Z-křivka) je prostor vyplňující křivka, která udává lineární pořadí průchodu vícerozměrným prostorem. Jinými slovy mapuje vícerozměrný prostor do jednorozměrného. Poprvé ji v roce 1966 představil zaměstnanec kanadské IBM Guy M. Morton.
Užití
Své užití má například při indexování vícerozměrných dat (pak je možné použít algoritmy pro indexování dat jednorozměrných) nebo při implementaci průchodu stromem koeficientů vzniklých vlnkovou transformací (viz algoritmus SPIHT). Algoritmy výpočtu této křivky využívají jejího rekurzivního charakteru.
Vlastnosti
Graf Mortonova rozkladu: * je křivka vyplňující prostor * vyplňuje 2D prostor beze zbytku (na rozdíl např. od dračí smyčky) * pro x, y ∈ N+ vyplňuje postupně I. +more kvadrant * nikde se neprotíná * do každé liché hrany směřuje křivka „doprava“ (o jednotku délky v kladném směru osy x) * po každé 4n. hraně křivka vyplní čtverec o straně n (dokončí n. iteraci) a přesouvá na první pozici čtyřnásobně velkého čtverce, o vektor (1; n) * po každé 2n+1. hraně křivka dokončí vyplňování čtverce o straně (n div 4) a přesouvá na první pozici stejně velkého čtverce, o vektor (-n div 4; -1). (div = dělení beze zbytku) * to, že výše zmíněné vektory rostou spolu s n, se v grafu jeví hranami neustále se přibližujícími vertikále nebo horizontále a dá se to považovat za prvek ne tolik lahodící oku, kterými většina prostor-vyplňujících křivek netrpí, neboť ty se posunují o jednotkovou délku.
level) { echo(0, 0, n); return; } if (level > 1) { ezw_xy(level‐1, 2*(x ), 2*(y ), n); ezw_xy(level‐1, 2*(x+1), 2*(y ), n); ezw_xy(level‐1, 2*(x ), 2*(y+1), n); ezw_xy(level‐1, 2*(x+1), 2*(y+1), n); return; } echo(x , y , n); echo(x+1, y , n); echo(x , y+1, n); echo(x+1, y+1, n); } void ezw(int level) { ezw_xy(level, 0, 0, 1
Výpočet bez rekurze == Ve skriptovacím jazyku PHP (nakreslí Mortonovu křivku pro prvních 1024 pozic).
header("Content-type: image/png"); define('STEP',20); $image=imagecreatetruecolor(640,640); for($j=$x=$y=0;$j>=2){ $x+=($n&1)>1)&(($i>>1)-1))) $level++; } imageline($image,STEP/2+$oldx*STEP, STEP/2+$oldy*STEP, STEP/2+$x*STEP, STEP/2+$y*STEP, imagecolorallocate($image,255,0,0)); } imagepng($image);
Odkazy
Reference
Související články
Externí odkazy
[url=https://sites. google. +morecom/a/compgeom. com/stann/]STANN: A library for approximate nearest neighbor search, using Z-order curve[/url] * [url=http://graphics. stanford. edu/~seander/bithacks. html#InterleaveTableObvious]Methods for programming bit interleaving[/url], Sean Eron Anderson, Stanford University.
Kategorie:Datové struktury Kategorie:Křivky vyplňující prostor