Polynomická rovnice
Technology
12 hours ago
8
4
2
Author
Albert FloresV matematice je algebraická rovnice nebo polynomická rovnice, rovnice ve formě :P(x) = Q(x) nebo, s ohledem na to, že rozdíl polynomů je stále polynom, můžeme ekvivalentně uvažovat jen :P(x) = 0, kde P a Q jsou polynomy s koeficienty v některém oboru, často v oboru racionálních čísel. Pro většinu autorů je algebraická rovnice je jednoproměnná, což značí, že obsahuje jen jednu proměnnou. Na druhou stranu polynomická rovnice může obsahovat několik proměnných a pak se nazývá víceproměnná.
Například, :x^5-3x+1 je algebraická rovnice s celočíselnými koeficienty a :y^4+\frac{xy}{2}=\frac{x^3}{3}-xy^2+y^2-\frac{1}{7} je polynomická rovnice nad oborem racionálních čísel.
Studium algebraických rovnic je staré pravděpodobně jako matematika: babylonští matematici již 2000 let př. n. +more l. uměli řešit určitý druh kvadratických rovnic (zobrazených na starých babylonských hliněných tabulkách).
Algebraické rovnice jsou základem mnoha oborů moderní matematiky: Algebraická teorie čísel je studium jednoproměnných algebraických rovnic nad oborem racionálních čísel.
Odkazy
Reference
Související články
Algebraický výraz * Algebraická funkce * Algebraické číslo * Algebraická geometrie * Galoisova teorie * Hledání kořene * Systém polynomických rovnic