Seznam integrálů iracionálních funkcí

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Seznam integrálů iracionálních funkcí je článek na české Wikipedii, který se zabývá seznamem integrálů iracionálních funkcí. Iracionální funkce je matematická funkce, která obsahuje iracionální členy, jako například odmocniny nebo logaritmy. Integrál je základní operace v matematice, která umožňuje najít plochu pod křivkou dané funkce. V článku jsou uvedeny různé integrační vzorce a metody pro výpočet integrálů iracionálních funkcí. Tato informace je užitečná pro studenty matematiky a pro všechny, kteří se zajímají o analýzu funkcí.

Toto je seznam integrálů (primitivních funkcí) iracionálních funkcí.

Integrály s r = \sqrt{x^2+a^2}

: \int r \;\mathrm{d}x = \frac{1}{2}\left[x r +a^2\,\ln\left(\frac{x+r}{a}\right)\right]

: \int r^3 \;\mathrm{d}x = \frac{1}{4}xr^3+\frac{1}{8}3a^2xr+\frac{3}{8}a^4\ln\left(\frac{x+r}{a}\right)

: \int r^5 \; \mathrm{d}x = \frac{1}{6}xr^5+\frac{5}{24}a^2xr^3+\frac{5}{16}a^4xr+\frac{5}{16}a^6\ln\left(\frac{x+r}{a}\right)

: \int x r\;\mathrm{d}x=\frac{r^3}{3}

: \int x r^3\;\mathrm{d}x=\frac{r^5}{5}

: \int x r^{2n+1}\;\mathrm{d}x=\frac{r^{2n+3}}{2n+3}

: \int x^2 r\;\mathrm{d}x= \frac{xr^3}{4}-\frac{a^2xr}{8}-\frac{a^4}{8}\ln\left(\frac{x+r}{a}\right)

: \int x^2 r^3\;\mathrm{d}x= \frac{xr^5}{6}-\frac{a^2xr^3}{24}-\frac{a^4xr}{16}-\frac{a^6}{16}\ln\left(\frac{x+r}{a}\right)

: \int x^3 r \; \mathrm{d}x = \frac{r^5}{5} - \frac{a^2 r^3}{3}

: \int x^3 r^3 \; \mathrm{d}x = \frac{r^7}{7}-\frac{a^2r^5}{5}

: \int x^3 r^{2n+1} \; \mathrm{d}x = \frac{r^{2n+5}}{2n+5} - \frac{a^3 r^{2n+3}}{2n+3}

: \int x^4 r\;\mathrm{d}x= \frac{x^3r^3}{6}-\frac{a^2xr^3}{8}+\frac{a^4xr}{16}+\frac{a^6}{16}\ln\left(\frac{x+r}{a}\right)

: \int x^4 r^3\;\mathrm{d}x= \frac{x^3r^5}{8}-\frac{a^2xr^5}{16}+\frac{a^4xr^3}{64}+\frac{3a^6xr}{128}+\frac{3a^8}{128}\ln\left(\frac{x+r}{a}\right)

: \int x^5 r \; \mathrm{d}x = \frac{r^7}{7} - \frac{2 a^2 r^5}{5} + \frac{a^4 r^3}{3}

: \int x^5 r^3 \; \mathrm{d}x = \frac{r^9}{9} - \frac{2 a^2 r^7}{7} + \frac{a^4 r^5}{5}

: \int x^5 r^{2n+1} \; \mathrm{d}x = \frac{r^{2n+7}}{2n+7} - \frac{2a^2r^{2n+5}}{2n+5}+\frac{a^4 r^{2n+3}}{2n+3}

: \int\frac{r\;\mathrm{d}x}{x} = r-a\ln\left|\frac{a+r}{x}\right| = r - a \sinh^{-1}\frac{a}{x}

: \int\frac{r^3\;\mathrm{d}x}{x} = \frac{r^3}{3}+a^2r-a^3\ln\left|\frac{a+r}{x}\right|

: \int\frac{r^5\;\mathrm{d}x}{x} = \frac{r^5}{5}+\frac{a^2r^3}{3}+a^4r-a^5\ln\left|\frac{a+r}{x}\right|

: \int\frac{r^7\;\mathrm{d}x}{x} = \frac{r^7}{7}+\frac{a^2r^5}{5}+\frac{a^4r^3}{3}+a^6r-a^7\ln\left|\frac{a+r}{x}\right|

: \int\frac{\mathrm{d}x}{r} = \sinh^{-1}\frac{x}{a} = \ln\left|x+r\right|

: \int\frac{\mathrm{d}x}{r^3} = \frac{x}{a^2r}

: \int\frac{x\,\mathrm{d}x}{r} = r

: \int\frac{x\,\mathrm{d}x}{r^3} = -\frac{1}{r}

: \int\frac{x^2\;\mathrm{d}x}{r} = \frac{x}{2}r-\frac{a^2}{2}\,\sinh^{-1}\frac{x}{a} = \frac{x}{2}r-\frac{a^2}{2}\ln\left|x+r\right|

: \int\frac{\mathrm{d}x}{xr} = -\frac{1}{a}\,\sinh^{-1}\frac{a}{x} = -\frac{1}{a}\ln\left|\frac{a+r}{x}\right|

Integrály s s = \sqrt{x^2-a^2}

Předpokládejme (x^2>a^2), pro (x^2, viz další sekce: : \int xs\;\mathrm{d}x = \frac{1}{3}s^3

: \int\frac{s\;\mathrm{d}x}{x} = s - a\cos^{-1}\left|\frac{a}{x}\right|

: \int\frac{\mathrm{d}x}{s} = \int\frac{\mathrm{d}x}{\sqrt{x^2-a^2}} =\ln\left|\frac{x+s}{a}\right| Poznámka: \ln\left|\frac{x+s}{a}\right|=\mathrm{sgn}(x)\cosh^{-1}\left|\frac{x}{a}\right|=\frac{1}{2}\ln\left(\frac{x+s}{x-s}\right), kde vezmeme kladnou hodnotu \cosh^{-1}\left|\frac{x}{a}\right|.

: \int\frac{x\;\mathrm{d}x}{s} = s

: \int\frac{x\;\mathrm{d}x}{s^3} = -\frac{1}{s}

: \int\frac{x\;\mathrm{d}x}{s^5} = -\frac{1}{3s^3}

: \int\frac{x\;\mathrm{d}x}{s^7} = -\frac{1}{5s^5}

: \int\frac{x\;\mathrm{d}x}{s^{2n+1}} = -\frac{1}{(2n-1)s^{2n-1}}

: \int\frac{x^{2m}\;\mathrm{d}x}{s^{2n+1}}= -\frac{1}{2n-1}\frac{x^{2m-1}}{s^{2n-1}}+\frac{2m-1}{2n-1}\int\frac{x^{2m-2}\;\mathrm{d}x}{s^{2n-1}}

: \int\frac{x^2\;\mathrm{d}x}{s}= \frac{xs}{2}+\frac{a^2}{2}\ln\left|\frac{x+s}{a}\right|

: \int\frac{x^2\;\mathrm{d}x}{s^3}= -\frac{x}{s}+\ln\left|\frac{x+s}{a}\right|

: \int\frac{x^4\;\mathrm{d}x}{s}= \frac{x^3s}{4}+\frac{3}{8}a^2xs+\frac{3}{8}a^4\ln\left|\frac{x+s}{a}\right|

: \int\frac{x^4\;\mathrm{d}x}{s^3}= \frac{xs}{2}-\frac{a^2x}{s}+\frac{3}{2}a^2\ln\left|\frac{x+s}{a}\right|

: \int\frac{x^4\;\mathrm{d}x}{s^5}= -\frac{x}{s}-\frac{1}{3}\frac{x^3}{s^3}+\ln\left|\frac{x+s}{a}\right|

: \int\frac{x^{2m}\;\mathrm{d}x}{s^{2n+1}}= (-1)^{n-m}\frac{1}{a^{2(n-m)}}\sum_{i=0}^{n-m-1}\frac{1}{2(m+i)+1}{n-m-1 \choose i}\frac{x^{2(m+i)+1}}{s^{2(m+i)+1}}\qquad\mbox{(}n>m\ge0\mbox{)}

: \int\frac{\mathrm{d}x}{s^3}=-\frac{1}{a^2}\frac{x}{s}

: \int\frac{\mathrm{d}x}{s^5}=\frac{1}{a^4}\left[\frac{x}{s}-\frac{1}{3}\frac{x^3}{s^3}\right]

: \int\frac{\mathrm{d}x}{s^7}=-\frac{1}{a^6}\left[\frac{x}{s}-\frac{2}{3}\frac{x^3}{s^3}+\frac{1}{5}\frac{x^5}{s^5}\right]

: \int\frac{\mathrm{d}x}{s^9}=\frac{1}{a^8}\left[\frac{x}{s}-\frac{3}{3}\frac{x^3}{s^3}+\frac{3}{5}\frac{x^5}{s^5}-\frac{1}{7}\frac{x^7}{s^7}\right]

: \int\frac{x^2\;\mathrm{d}x}{s^5}=-\frac{1}{a^2}\frac{x^3}{3s^3}

: \int\frac{x^2\;\mathrm{d}x}{s^7}= \frac{1}{a^4}\left[\frac{1}{3}\frac{x^3}{s^3}-\frac{1}{5}\frac{x^5}{s^5}\right]

: \int\frac{x^2\;\mathrm{d}x}{s^9}= -\frac{1}{a^6}\left[\frac{1}{3}\frac{x^3}{s^3}-\frac{2}{5}\frac{x^5}{s^5}+\frac{1}{7}\frac{x^7}{s^7}\right]

Integrály s t = \sqrt{a^2-x^2}

: \int t \;\mathrm{d}x = \frac{1}{2}\left(xt+a^2\sin^{-1}\frac{x}{a}\right) \qquad\mbox{(}|x|\leq|a|\mbox{)}

: \int xt\;\mathrm{d}x = -\frac{1}{3} t^3 \qquad\mbox{(}|x|\leq|a|\mbox{)}

: \int\frac{t\;\mathrm{d}x}{x} = t-a\ln\left|\frac{a+t}{x}\right| \qquad\mbox{(}|x|\leq|a|\mbox{)}

: \int\frac{\mathrm{d}x}{t} = \sin^{-1}\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}

: \int\frac{x^2\;\mathrm{d}x}{t} = -\frac{x}{2}t+\frac{a^2}{2}\sin^{-1}\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}

: \int t\;\mathrm{d}x = \frac{1}{2}\left(xt-\sgn x\,\cosh^{-1}\left|\frac{x}{a}\right|\right) \qquad\mbox{(pro }|x|\ge|a|\mbox{)}

Integrály s R^{1/2} = \sqrt{ax^2+bx+c}

: \int\frac{\mathrm{d}x}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln\left|2\sqrt{a R}+2ax+b\right| \qquad \mbox{(pro }a>0\mbox{)} : \int\frac{\mathrm{d}x}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\,\sinh^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad \mbox{(pro }a>0\mbox{, }4ac-b^2>0\mbox{)} : \int\frac{\mathrm{d}x}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln|2ax+b| \quad \mbox{(pro }a>0\mbox{, }4ac-b^2=0\mbox{)} : \int\frac{\mathrm{d}x}{\sqrt{ax^2+bx+c}} = -\frac{1}{\sqrt{-a}}\arcsin\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad \mbox{(pro }a

: \int\frac{\mathrm{d}x}{\sqrt{(ax^2+bx+c)^{3}}} = \frac{4ax+2b}{(4ac-b^2)\sqrt{R}}

: \int\frac{\mathrm{d}x}{\sqrt{(ax^2+bx+c)^{5}}} = \frac{4ax+2b}{3(4ac-b^2)\sqrt{R}}\left(\frac{1}{R}+\frac{8a}{4ac-b^2}\right)

: \int\frac{\mathrm{d}x}{\sqrt{(ax^2+bx+c)^{2n+1}}} = \frac{4ax+2b}{(2n-1)(4ac-b^2)R^{(2n-1)/2}}+\frac{8a(n-1)}{(2n-1)(4ac-b^2)}\int\frac{\mathrm{d}x}{R^{(2n-1)/2}}

: \int\frac{x\;\mathrm{d}x}{\sqrt{ax^2+bx+c}} = \frac{\sqrt{R}}{a}-\frac{b}{2a}\int\frac{\mathrm{d}x}{\sqrt{R}}

: \int\frac{x\;\mathrm{d}x}{\sqrt{(ax^2+bx+c)^3}} = -\frac{2bx+4c}{(4ac-b^2)\sqrt{R}}

: \int\frac{x\;\mathrm{d}x}{\sqrt{(ax^2+bx+c)^{2n+1}}} = -\frac{1}{(2n-1)aR^{(2n-1)/2}}-\frac{b}{2a}\int\frac{\mathrm{d}x}{R^{(2n+1)/2}}

: \int\frac{\mathrm{d}x}{x\sqrt{ax^2+bx+c}}=-\frac{1}{\sqrt{c}}\ln\left(\frac{2\sqrt{c R}+bx+2c}{x}\right)

: \int\frac{\mathrm{d}x}{x\sqrt{ax^2+bx+c}}=-\frac{1}{\sqrt{c}}\sinh^{-1}\left(\frac{bx+2c}{|x|\sqrt{4ac-b^2}}\right)

Integrály s R^{1/2} = \sqrt{ax+b}

: \int \frac{\mathrm{d}x}{x\sqrt{ax + b}}\,=\,\frac{-2}{\sqrt{b}}\tanh^{-1}{\sqrt{\frac{ax + b}{b}}}

: \int\frac{\sqrt{ax + b}}{x}\,\mathrm{d}x\;=\;2\left(\sqrt{ax + b} - \sqrt{b}\tanh^{-1}{\sqrt{\frac{ax + b}{b}}}\right)

: \int\frac{x^n}{\sqrt{ax + b}}\,\mathrm{d}x\;=\;\frac{2}{a(2n+1)}\left(x^{n}\sqrt{ax + b} - bn\int\frac{x^{n-1}}{\sqrt{ax + b}}\right)

: \int x^n \sqrt{ax + b}\,\mathrm{d}x \; = \; \frac{2}{2n +1}\left(x^{n+1} \sqrt{ax + b} + bx^{n} \sqrt{ax + b} - nb\int x^{n-1}\sqrt{ax + b}\,\mathrm{d}x \right)

Kategorie:Integrální počet Kategorie:Matematické seznamy

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top