Vážený průměr

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Vážený průměr zobecňuje aritmetický průměr a poskytuje charakteristiku statistického souboru v případě, že hodnoty v tomto souboru mají různou důležitost, různou váhu. Používá se zejména při počítání celkového aritmetického průměru souboru složeného z více podsouborů.

Pro výpočet váženého průměru potřebujeme jednak hodnoty, jejichž průměr chceme spočítat, a zároveň jejich váhy.

Máme-li soubor n hodnot :X = \{x_1, \ldots, x_n\} a k nim odpovídající váhy :W = \{w_1, \ldots, w_n\}, je vážený průměr dán vzorcem : \bar{x} = \frac{ \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}

či : \bar{x} = \frac{w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n}{w_1 + w_2 + w_3 + ... + w_n}

Pokud jsou všechny váhy stejné, je vážený průměr totožný s aritmetickým průměrem. Ačkoli se vážený průměr chová podobně jako aritmetický průměr, má několik nezvyklých vlastností, které jsou například vyjádřeny v Simpsonově paradoxu.

Vážené verze jiných průměrů lze také spočítat. Příkladem je vážený geometrický průměr nebo vážený harmonický průměr.

Příklad

Řekněme, že škola má dvě třídy, jednu s 20 studenty a druhou s 32. Bodové ohodnocení v každé třídě při jednom testu bylo

* Třída A - 62, 67, 71, 74, 76, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 84, 86, 89, 93, 98 * Třída B - 80, 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 93, 93, 94, 95, 96, 97, 98, 99, 100

Aritmetický průměr bodů ve třídě A je 80, ve třídě B je 90. Když spočítáme aritmetický průměr 80 a 90, dostaneme 85. +more Toto ovšem není aritmetický průměr bodů všech studentů. K jeho určení potřebujeme spočítat součet všech bodů a vydělit počtem všech studentů, tedy : \bar{x} = \frac{4480}{52} \doteq 86{,}15.

Nebo si můžeme pomoci váženým průměrem a spočítat vážený průměr průměrů bodů obou tříd použitím počtu studentů jako vah:

: \bar{x} = \frac{20\cdot 80 + 32\cdot 90}{20 + 32} \doteq 86{,}15

Nyní jsme již k vypočítání aritmetického průměru všech bodů nepotřebovali znát jednotlivé známky, stačily nám pouze aritmetické průměry a počty studentů v jednotlivých třídách.

Příklad z praxe

Průměrná denní teplota se v meteorologii stanovuje jako průměr z teploty vzduchu naměřené v 7 hodin, teploty ve 14 hodin a teploty v 21 hodin, přičemž poslední údaj se započítává s dvojnásobnou váhou. Platí tedy : \bar{t} = \frac{t_7 + t_{14} + 2\cdot t_{21}}{4}

Kategorie:Popisná statistika

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top