Array ( [0] => 15504204 [id] => 15504204 [1] => cswiki [site] => cswiki [2] => Spirála [uri] => Spirála [3] => [img] => [4] => [day_avg] => [5] => [day_diff] => [6] => [day_last] => [7] => [day_prev_last] => [8] => [oai] => [9] => [is_good] => [10] => [object_type] => [11] => 0 [has_content] => 0 [12] => [oai_cs_optimisticky] => ) Array ( [0] => {{Různé významy|tento=[[křivka|křivce]]}} [1] => [[Soubor:ContextFreeTutorial 01Spiral.png|náhled|Příklad spirály]] [2] => '''Spirála''' je [[křivka]], která obíhá pevně daný ústřední bod (''pól spirály'') a přitom se od tohoto bodu soustavně vzdaluje. Formální matematická definice, která by zahrnovala všechny spirály, neexistuje (na rozdíl např. od kuželoseček). [3] => [4] => Mezi důležité spirály patří: [5] => * [[Archimédova spirála]] [6] => * [[Fermatova spirála]] [7] => * [[hyperbolická spirála]] [8] => * [[hyperbolická platformická spirála]] [9] => * [[klotoida]] (též Eulerova nebo Cornuova spirála) [10] => * [[lituus]] [11] => * [[logaritmická spirála]] [12] => [13] => == Odkazy == [14] => __BEZOBSAHU__ [15] => === Literatura === [16] => * JAREŠOVÁ, Miroslava a VOLF, Ivo. ''Matematika křivek: studijní text pro soutěžící FO a ostatní zájemce o fyziku.'' Hradec Králové: MAFY, 2006. 64 s. Knihovnička fyzikální olympiády, č. 73. ISBN 80-86148-83-1. Dostupné také z: http://fyzikalniolympiada.cz/texty/matematika/mkrivek.pdf [17] => * Cook, T., 1903. ''Spirals in nature and art''. Nature 68 (1761), 296. {{en}} [18] => * Cook, T., 1979. ''The curves of life''. Dover, New York. {{en}} [19] => * Dimulyo, S., Habib, Z., Sakai, M., 2009. ''Fair cubic transition between two circles with one circle inside or tangent to the other''. Numerical Algorithms 51, 461–476 [http://www.springerlink.com/content/113644325114041q/] {{Wayback|url=http://www.springerlink.com/content/113644325114041q/ |date=20181127024818 }}. {{en}} [20] => * Farin, G., 2006. ''Class A Bézier curves''. Computer Aided Geometric Design 23 (7), 573–581 [http://www.sciencedirect.com/science/article/pii/S016783960600032X]. {{en}} [21] => * Farouki, R.T., 1997. ''Pythagorean-hodograph quintic transition curves of monotone curvature''. Computer-Aided Design 29 (9), 601–606. {{en}} [22] => * Habib, Z., Sakai, M., 2005. ''Spiral transition curves and their applications''. Scientiae Mathematicae Japonicae 61 (2), 195–206. {{en}} [23] => * Harary, G., Tal, A., 2011. ''The natural 3D spiral''. Computer Graphics Forum 30 (2), 237–246 [http://webee.technion.ac.il/~ayellet/Ps/11-HararyTal.pdf] {{Wayback|url=http://webee.technion.ac.il/~ayellet/Ps/11-HararyTal.pdf |date=20151122013249 }}. {{en}} [24] => * Kurnosenko, A. ''Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data''. Computer Aided Geometric Design, 27(3), 262–280, 2010 [http://www.sciencedirect.com/science/article/pii/S0167839609001423]. {{en}} [25] => * Kurnosenko, A. ''Two-point G2 Hermite interpolation with spirals by inversion of hyperbola''. Computer Aided Geometric Design, 27(6), 474–481, 2010. {{en}} [26] => * Meek, D., Walton, D., 1989. ''The use of Cornu spirals in drawing planar curves of controlled curvature''. Journal of Computational and Applied Mathematics 25 (1), 69–78 [http://www.sciencedirect.com/science/article/pii/0377042789900769]. {{en}} [27] => * Miura, K. T., 2006. ''A general equation of aesthetic curves and its self-affinity''. Computer-Aided Design and Applications 3 (1–4), 457–464 [https://web.archive.org/web/20130628000547/http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/KTMiura-CAD06Final.pdf]. {{en}} [28] => * Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. ''Derivation of a general formula of aesthetic curves''. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, 166–171 [https://web.archive.org/web/20130628051506/http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/acurveHC0.pdf]. {{en}} [29] => * Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K., Wang, S., 2004. ''Designing fair curves using monotone curvature pieces''. Computer Aided Geometric Design 21 (5), 515–527 [http://www.sciencedirect.com/science/article/pii/S0167839604000470]. {{en}} [30] => * Xu, L., Mould, D., 2009. ''Magnetic curves: curvature-controlled aesthetic curves using magnetic fields''. In: Deussen, O., Hall, P. (eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association [http://gigl.scs.carleton.ca/sites/default/files/ling_xu/artn-cae.pdf]. {{en}} [31] => * Yoshida, N., Saito, T., 2006. ''Interactive aesthetic curve segments''. The Visual Computer 22 (9), 896–905 [http://www.yoshida-lab.net/aesthetic/ias2006pg.pdf] {{Wayback|url=http://www.yoshida-lab.net/aesthetic/ias2006pg.pdf |date=20160304064701 }}. {{en}} [32] => * Yoshida, N., Saito, T., 2007. ''Quasi-aesthetic curves in rational cubic Bézier forms''. Computer-Aided Design and Applications 4 (9–10), 477–486 [http://www.yoshida-lab.net/aesthetic/cad07yoshida.pdf] {{Wayback|url=http://www.yoshida-lab.net/aesthetic/cad07yoshida.pdf |date=20160303205632 }}. {{en}} [33] => * Ziatdinov, R., Yoshida, N., Kim, T., 2012. ''Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions''. Computer Aided Geometric Design 29 (2), 129–140 [http://www.sciencedirect.com/science/article/pii/S0167839611001452]. {{en}} [34] => * Ziatdinov, R., Yoshida, N., Kim, T., 2012. ''Fitting G2 multispiral transition curve joining two straight lines'', Computer-Aided Design 44(6), 591–596 [http://www.sciencedirect.com/science/article/pii/S001044851200019X]. {{en}} [35] => * Ziatdinov, R., 2012. ''Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function''. Computer Aided Geometric Design 29 (7): 510–518 [http://www.sciencedirect.com/science/article/pii/S0167839612000325]. {{en}} [36] => * Ziatdinov, R., Miura K.T., 2012. ''On the Variety of Planar Spirals and Their Applications in Computer Aided Design''. European Researcher 27 (8-2), 1227–1232 [http://www.erjournal.ru/pdf.html?n=1345307278.pdf]. {{en}} [37] => [38] => === Související články === [39] => * [[Cykloida]] [40] => * [[Evolventa]] [41] => * [[Šroubovice]] [42] => [43] => === Externí odkazy === [44] => * {{Wikislovník|heslo=spirála}} [45] => * {{Commonscat|Spirals}} [46] => {{Autoritní data}} [47] => [48] => [[Kategorie:Rovinné křivky]] [] => )
good wiki

Spirála

Příklad spirály Spirála je křivka, která obíhá pevně daný ústřední bod (pól spirály) a přitom se od tohoto bodu soustavně vzdaluje. Formální matematická definice, která by zahrnovala všechny spirály, neexistuje (na rozdíl např.

More about us

About

Expert Team

Vivamus eget neque lacus. Pellentesque egauris ex.

Award winning agency

Lorem ipsum, dolor sit amet consectetur elitorceat .

10 Year Exp.

Pellen tesque eget, mauris lorem iupsum neque lacus.

You might be interested in

,'Soubor:ContextFreeTutorial 01Spiral.png','křivka','Archimédova spirála','Fermatova spirála','hyperbolická spirála','hyperbolická platformická spirála','klotoida','lituus','logaritmická spirála','Cykloida','Evolventa','Šroubovice'