H-1

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

H-1 byl raketový motor na kapalné pohonné látky používaný na prvním stupni raket Saturn I a Saturn IB. Navrhla a vyráběla jej firma Rocketdyne, dnes divize společnosti Pratt & Whitney. Konstrukčně navazuje na motor S-3D, vyvinutý v padesátých letech a používaný na balistických raketách Thor a Jupiter. H-1 byl používán vždy ve svazku osmi motorů, v takzvaném Clusteru. Jako palivo sloužil vysoce rafinovaný petrolej RP-1 a jako okysličovadlo kapalný kyslík.

...
...
...
...
+more images (1)

Historie

Původní motor S-3 rakety PGM-19 Jupiter Vývoj každého nového motorů začíná v předstihu několik let před vývojem samotné nosné rakety. +more Saturn v tomto nebyl výjimkou a tak byly první specifikace jeho motorů načrtnuty již v roce 1957. Tehdy se Saturn nazýval Super-Jupiter a byl ve stádiu velmi rané koncepce. V dubnu 1957 zadala agentura ARPA (Advanced Research Projects Agency) vypracování studie těžké nosné rakety s nosností 9000 kg. Von Braunův tým v Army Ballistic Missile Agency spočítal, že tah při startu takové rakety by měl být až 1,5 milionu liber (~6,7 MN). Po vypuštění Sputniku 1 se práce na nové raketě daly do pohybu a koncept Super-Jupiteru dostal konkrétnější podobu. Jako pohonná jednotka prvního stupně měl byt použit svazek čtyř motorů E-1. Byl zvažován i motor F-1 ale ten je ve velmi rané fázi vývoje a byl tedy mimo hru. Podobně to však vypadalo i s motorem E-1, u kterého agentura ARPA (tehdejší investor) nepředpokládala nasazení dříve, než po roce 1960. Podle plánu se však statické zkoušky měly konat již koncem roku 1959.

Statický test motorů

Motory E-1 byly tedy nahrazeny osmi slabšími motory postavenými na základě existujících motorů. Firma Rocketdyne byla vybrána, aby upravila starší motory S-3D, používané na balistických raketách Thor a Jupiter. +more Kontrakt byl podepsán 11. září 1958. Rocketdyne měl dlouholeté zkušenosti s konstrukcí raketových motorů a od konce druhé světové války byl jedním z hlavních dodavatelů raketových motorů pro letectvo a armádu. První prototyp byl zhotoven v rekordně krátkém čase a prošel statickým testem 31. prosince 1958. Vývoj poté probíhal velmi rychle a již v květnu 1959 byl do ABMA dodán první motor. O rok později (duben až květen 1960) již probíhaly statické testy včetně testu svazku všech osmi motorů.

První raketa Saturn I odstartovala v říjnu 1961 a všechny motory pracovaly správně. Při čtvrté misi SA-4 byl proveden test výpadku motoru. +more Jeden byl úmyslně vypnut a řídící systém musel přesměrovat palivo do zbylých sedmi a prodloužit dobu jejich činnosti tak, aby bylo dosaženo požadované trajektorie. Při šesté misi A-101 došlo ke stejné situaci, tentokrát ale neplánovaně. Jeden motor se po poruše turbočerpadla zastavil a jeho tah musel být kompenzován zbylými motory.

Motor byl zdokonalován i během sériové výroby a průběžně tak docházelo ke zvyšování tahu. Saturn I byl zpočátku vybaven jednotkami o tahu 734 a později 836 kN. +more Saturn IB používal při prvních pěti misích jednotky o tahu 890 kN a při posledních misích je nahradily nejsilnější jednotky s tahem až 912 kN. Motory H-1 nebyly použity na jiné nosné raketě a poslední start se tak konal 15. července 1975, když raketa Saturn IB vynesla kosmickou loď Apollo na společnou Sovětsko-Americkou misi Apollo-Sojuz.

Popis

Osm motorů H-1 na prvním stupni rakety Saturn I Konstrukce motoru byla typická pro období padesátých let. +more Pohonné látky byly dopravovány do spalovací komory pomocí turbočerpadla poháněného malou spalovací turbínou. Jedná se tedy o motor s otevřeným cyklem. Jak je uvedeno výše, motor je konstrukčně odvozen od motoru S-3D. Potřeba zvýšení tahu až k hranici téměř 1 MN však donutila konstruktéry hledat nová řešení chlazení spalovací komory, mazání pohyblivých součástí, dopravy a vstřikování pohonných látek, mechanismu směrování tahu a dalších systémů.

Spalovací komora měla nový tvar, který umožňoval dosáhnout vyšší tlak, teplotu a expanzní poměr. To vedlo k rychlejšímu a efektivnějšímu spalování a tím se zvýšil tah. +more Ze jmenovaných parametrů nové komory vyvstávala potřeba inovovat chlazení. Systém regenerativního chlazení motoru S-3D používal zastaralé koncepce dvojité stěny a paliva proudícího ve spáře. Tento systém měl výrazná omezení z hlediska rychlosti průtoku a byl těžší. H-1 tedy využíval nového postupu výroby chladicích kanálků, kdy jsou tenké trubky navinuty a připájeny na stěnu komory a trysky. Tento způsob je sice nákladnější, ale dovoluje rychlejší cirkulaci chladicího média, lepší přestup tepla a snižuje hmotnost. Jako chladicí médium byl nově použit kapalný kyslík. Výstupní trysky předchozích motorů mívaly tvar kužele. H-1 měl trysku ve tvaru zvonu, která mohla být o při stejném tahu o 20% kratší. Motor H-1 v Musée de l'Air et de l'Espace v Le Bourget Pokrok v oblasti rychlosti spalování a objemu výstupních plynů přinášel požadavek na rychlejší dopravu paliva a tím pádem i silnější turbočerpadla. Nová konstrukce čerpadlové jednotky musela zvládat dopravu pohonných látek při vyšších tlacích, větším průtoku, ale při stejné hmotnosti a velikosti jako starší jednotka. Bylo proto nutné zvýšit otáčky turbočerpadel. Vysoké otáčky způsobovaly větší namáhání a to vyžadovalo použití odolnějších materiálů, zvýšení výrobní přesnosti, vyšší jakost povrchu styčných ploch, lepší mazání a odvod tepla vzniklého třením.

Systém mazání byl výrazně zjednodušen. Jako mazivo bylo nově používáno palivo RP-1, které procházelo přes směšovací zařízení, které do něj přidávalo aditiva pro lepší mazací vlastnosti. +more Samotné RP-1 je stejně jako petrolej rozpouštědlo a z hlediska tribologie tedy není vhodné mazivo. Aditiva však zhoršují jeho vlastnosti jako paliva a proto bylo „přimazáno“ pouze malé množství RP-1. Po splnění jeho mazací úlohy bylo opět smíšeno se zbytkem a spáleno ve spalovací komoře. Takovýto systém mazání řešil i odvod tepla od součástí s vysokým třením, protože „mazivo“ vzniklé teplo odvádělo a později stejně shořelo.

Pohon turbočerpadla zajišťovala spalovací turbína, která odebírala část pohonných látek z hlavního vedení. K nastartování turbíny bylo potřeba zažehnout plynový generátor na tuhé pohonné látky, což byl v podstatě malý raketový motor. +more Vzniklé plyny poskytly turbíně hybnost na dostatečnou dobu, než začalo proudit palivo a proces se stal samo-udržitelným. Po zastavení motoru mohl být zážeh zopakován, ale pouze při statických testech na zemi. Opakovaný zážeh totiž vyžadoval ruční výměnu plynového generátoru na TPL a zážehového systému.

Na prvním stupni Saturnu I byly čtyři motory umístěny uprostřed (vnitřní) a další čtyři po obvodu (vnější). Jejich konstrukce se tak mírně lišila, protože vnitřní motory byly nepohyblivé, ale vnější musely být kloubově zavěšené aby se jejich nakloněním dosáhlo potřebného řídícího momentu. +more Dřívější motory měly na výstupní trysce připevněny lamely, které směrovaly část proudu plynů a tak byl získán řídící moment. Nová koncepce využívala hydraulické naklápění celého motoru. To znamenalo umístění turbočerpadel a dalších komponent přímo na pohyblivou konstrukci motoru. Výsledkem byl složitější ale efektivnější systém směrování tahu a zároveň byla minimalizována potřeba vysokotlakých vedení (díky kratší vzdálenosti mezi čerpadlem a komorou).

Odkazy

Související články

Raketový motor na kapalné pohonné látky * Saturn I * Saturn IB

Externí odkazy

http://www.astronautix.com/engines/h1.htm * http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021163_1974021163.pdf

Literatura

BILSTEIN, Roger E.. Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles.

Kategorie:Raketové motory Kategorie:Kosmická technika USA

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top