Prvočíselná věta

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Prvočíselná věta je důležitý poznatek z oboru teorie čísel, který hrubě popisuje rozmístění prvočísel mezi přirozenými čísly.

Zhruba se dá prvočíselná věta vyjádřit tak, že při náhodném výběru čísla blízko nějakého velkého čísla N pravděpodobnost, že toto číslo bude prvočíslem, je přibližně 1/ln(N), kde ln(N) značí přirozený logaritmus N. Například kolem N = 10 000 je přibližně jedno z devíti čísel prvočíslem, zatímco poblíž N = 1 000 000 000 je pouze jedno z 21 čísel prvočíslem. +more Jinými slovy lze říct, že průměrná mezera mezi dvěma prvočísly blízko N je zhruba ln(N).

Vyjádření věty

Nechť π(x) je prvočíselná funkce, která udává počet prvočísel menších nebo rovných x pro jakékoliv reálné x, Například π(10) = 4, neboť existují právě čtyři prvočísla (2, 3, 5 a 7) menší nebo rovna 10. Prvočíselná věta poté říká, že limita podílu funkcí π(x) a x / ln(x), kde x jde k nekonečnu, je 1, což se vyjadřuje vzorcem

:\lim_{x\to\infty}\frac{\pi(x)}{x/\ln(x)}=1,

pomocí asymptotické notace je možné totéž vyjádřit také zápisem

:\pi(x)\sim\frac{x}{\ln x}.

Podstatné je, že vzorec neříká nic o rozdílu těchto dvou funkcí, když x jde k nekonečnu. Chování tohoto rozdílu je ve skutečnosti velmi komplikované a je spojeno s jedním z nejdůležitějších nevyřešených problémů matematiky: Riemannovou domněnkou. +more Věta namísto toho vyjadřuje, že výraz x/ln(x) aproximuje π(x) v tom smyslu, že chyba aproximace se blíží k nule, když se x blíží k nekonečnu.

Ekvivalentním tvrzením je taktéž to, že n-té prvočíslo pn je přibližně rovno n ln(n); opět s chybou aproximace blížící se nule, když se n blíží nekonečnu.

Stručná historie

Konkrétnější úvahy nad asymptotickým vyjádřením četnosti prvočísel se nacházejí již u Carla Friedricha Gausse na přelomu 18. a 19. +more století. Během 19. století se pokusili PČV dokázat Pafnutij Lvovič Čebyšev a Bernhard Riemann. Avšak první důkaz podali nezávisle na sobě francouzský matematik Jacques Hadamard a belgický matematik Charles Jean de la Vallée-Poussin v roce 1896 s použitím složitých metod komplexní analýzy. Důkazem prvočíselné věty se poté zabývali další matematici v průběhu 20. století, kteří našli několik dalších důkazů. O mnoho jednodušší důkaz podal německý matematik Edmund Landau v roce 1909 a roku 1949 objevil elementární důkaz nejprve norský matematik Atle Selberg a poté Paul Erdös, který lehce upravil některé Selbergovy myšlenky ke konstrukci vlastního důkazu.

Odkazy

Související články

Prvočíselná funkce

Reference

Externí odkazy

[url=http://mathworld.wolfram.com/PrimeNumberTheorem.html]Prvočíselná věta[/url] v encyklopedii MathWorld

Kategorie:Prvočísla Kategorie:Matematické věty a důkazy Kategorie:Teorie čísel

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top