Teorie modelů

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Teorie modelů je matematická disciplína, která je jedním z podoborů matematické logiky. Zabývá se studiem reprezentace matematických konceptů pomocí pojmů teorie množin a studiem struktur a modelů, jejich vlastností a vzájemných vztahů a také jejich vztahem k pojmům axiomatické teorie a dokazatelnosti.

Model

Hlavní článek: Model (logika)

Model je sémantický pojem umožňující mluvit o pravdivosti (platnosti) formulí. Jeho protikladem je syntaktický pojem teorie umožňující hovořit o dokazatelnosti formulí. +more Vztah mezi těmito dvěma pojmy je (v klasické logice) vyjádřen Gödelovou větou o úplnosti. Studium modelů a jejich vlastností může být velmi užitečné, neboť sestrojení vhodného modelu je nejčastější způsob prokázání nedokazatelnosti některých tvrzení v jistých teoriích.

Předmět studia

Teorie modelů se zabývá například otázkami: * Je možné nějakou strukturu či třídu struktur věrně vystihnout nějakými axiomy. - axiomatizovatelnost * Jaké množiny je možné v dané struktuře jednoznačně definovat pomocí nějaké formule. +more - definovatelnost * Jaké jsou vztahy mezi modely dané teorie. Především: ** Kolik různých modelů existuje. - spektrum teorie ** Existují mezi těmito modely nějaké, které jsou v jistém smyslu minimální resp. maximální. - prvomodely a univerzální modely ** Existují mezi těmito modely nějaké obsahující nejmenší nutný resp. největší možný počet prvků. - atomické a saturované modely.

Důležité věty teorie modelů

Základní význam pro teorii modelů má Gödelova věta o úplnosti predikátové logiky, která neformálně říká, že pojmy dokazatelnosti (v teorii) a pravdivosti (v modelu) splývají, tedy zkoumání modelů může být užitečné pro zjišťování vlastností axiomatických teorií a dokazatelnosti v nich. Další podstatnou větou je věta o kompaktnosti, která poukazuje na konečný charakter pojmu pravdivosti (vyplývá-li nějaká formule z jisté množiny předpokladů, pak vyplývá i z nějaké její konečné části). +more Podle Löwenheim-Skolemovy věty existují pro danou bezespornou teorii modely všech mohutností větších než kardinalita jazyka. Morleyova věta o kategoričnosti navíc tvrdí, že existuje-li v nějaké takové mohutnosti jen jediný model, pak v každé takové mohutnosti existuje jen jediný model. Podle Vaughtovy "nikdy 2" věty nemůže mít úplná teorie ve spočetném jazyce právě dva spočetné modely.

Související články

Matematická logika

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top