Mandelbrotova množina

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Mandelbrotova množina (zobrazena černě) Mandelbrotova množina je množina bodů komplexní roviny, které jsou odvozeny od rekurzivních procesů s komplexními čísly patřícími této množině a jejímu okolí. Mandelbrotova množina je jeden z nejznámějších fraktálů, přesněji řečeno fraktálem je její okraj. K jejímu určení se používá zobrazení, které každému komplexnímu číslu c přiřazuje určitou posloupnost komplexních čísel z_n. Tato posloupnost je určena následujícím rekurzivním předpisem: :z_0=0,\quad z_{n+1} = z_n^2 + c. Mandelbrotova množina je pak definována jako množina komplexních čísel c, pro která je posloupnost z_0, z_1, z_2, \dots omezená, tj. splňuje následující podmínku: :Existuje reálné číslo m takové, že pro všechna n je |z_n|\le m.

Lze dokázat, že překročí-li absolutní hodnota některého členu posloupnosti z_n hodnotu 2, pak tato posloupnost není omezená (jde do nekonečna). Odtud je zřejmé, že lze ve výše uvedené definici položit m = 2, aniž by tím došlo ke změně jejího významu.

...
...
...

Vlastnosti

Část Mandelbrotovy množiny +morepng|náhled'>Mandelbrotova množina; barva bodů v jejím okolí odpovídá pořadí členu posloupnosti zn, u něhož je poprvé zjištěno, že tato posloupnost jde do nekonečna. * Celá množina leží uvnitř kruhu se středem v nule a poloměrem 2. * Množina je souvislá (jak dokázali roku 1982 Adrien Douady a John H. Hubbard), je dokonce jednoduše souvislá. Předpokládá se, že je také obloukově souvislá, ale není to dokázáno. * Hausdorffova dimenze hranice množiny je 2, jedná se tedy o fraktál. * Množina je kompaktní, tedy uzavřená, tím spíš borelovská a lze jí tedy přiřadit Lebesgueovu míru. Její plocha je přibližně 1,5065918. * Množina sestává ze spočetně nekonečného množství podobjektů, podobných kardioidám a kruhům, které se vzájemně dotýkají.

Výpočet a grafické zobrazení

Nejprve se pro každý určený bod komplexní roviny postupně vyčíslují členy posloupnosti z_n a zjišťuje se, jestli splňují podmínku |z_n| \le 2 (výhodněji její druhou mocninu). V případě, že tato podmínka není splněna, bod nepatří do Mandelbrotovy množiny. +more Při zobrazování se často podle hodnoty n, při níž došlo k nesplnění podmínky, zvolí barva, kterou bude bod zobrazen. Pro dosažení dobrého vzhledu se pro blízká „vyřazovací“ n volí podobné barvy. Pokud po vhodně zvoleném počtu iterací zůstává uvedená podmínka splněna, je bod považován za součást Mandelbrotovy množiny (zobrazuje se obvykle černou barvou). Nastavení této hranice ovlivňuje výsledný obrázek: pro příliš malou hodnotu budou některé body chybně označeny jako patřící do množiny, ale velký počet iterací vyžaduje delší čas výpočtu.

Výpočet je možno zrychlit tím, že se rychle detekují body, které do množiny evidentně patří, protože se nacházejí uvnitř hlavních částí množiny - kružnice a kardioidy.

Historie

Množinu jako první definoval v roce 1905 francouzský matematik Pierre Fatou, který studoval rekurzivní procesy jako např. :z \mapsto z^2 + c. +more Pokud se taková operace opakovaně provádí z nějaké počáteční hodnoty z_0, vznikne tím posloupnost bodů, která se označuje jako orbit bodu z_0 vůči dané transformaci. Fatou si uvědomil, že o chování podobných systémů dobře vypovídá studium orbitu bodu z_0 = 0. Takových systémů existuje nekonečně mnoho (jeden pro každou hodnotu c). Jelikož Fatou neměl k dispozici počítač, pokusil se vytvořit orbity několika takových funkcí ručně, přičemž nalezl již zmiňovanou hranici 2, po překročení které bude orbita zaručeně utíkat do nekonečna.

Ruční výpočty byly pochopitelně velice náročné, takže Fatou nikdy to, co se dnes označuje jako Mandelbrotova množina, na vlastní oči nespatřil. Prvním, kdo tuto množinu nechal vykreslit počítačem, byl Benoît Mandelbrot, podle kterého je také pojmenována.

Mandelbrot tuto množinu a vůbec pojem fraktál popularizoval ve své knize z roku 1975, Les Objets Fractals: Forme, Hasard et Dimension.

Příbuzné fraktály

Při změně počáteční podmínky u definujícího předpisu je výsledkem nesouvislá množina. Takovému znetvoření se anglicky říká tilt (naražení, zvrhnutí).

Mandelbrotova množina má těsný vztah k Juliovým množinám; dokonce obsahuje místa, která vzhledem připomínají Juliovy množiny. Každému bodu komplexní roviny odpovídá Juliova množina (s parametrem daným souřadnicemi daného bodu), přičemž bodům uvnitř Mandelbrotovy množiny odpovídají souvislé Juliovy množiny, bodům mimo pak nesouvislé. +more Vizuálně nejzajímavější Juliovy množiny odpovídají bodům poblíž hranice Mandelbrotovy množiny, neboť bodům hluboko uvnitř odpovídají jednoduché geometrické tvary, bodům daleko vně pak jen několik roztroušených bodů (okolí bodu c připomíná střed Juliovy množiny s parametrem c).

Reference

Související články

Juliova množina - podobný princip, ale z_0 je bod komplexní roviny a c je parametr

Externí odkazy

[url=http://kmlinux. fjfi. +morecvut. cz/~pausp1/html/skola/fraktaly/reserse. htm]Petr Pauš: Počítačové generování fraktálních množin[/url] (rešeršní práce) * [url=http://www. root. cz/serialy/fraktaly-v-pocitacove-grafice/]Fraktály v počítačové grafice[/url] - rozsáhlý seriál o fraktálech vycházející v elektronickém časopise Root.

Kategorie:Fraktály Kategorie:Komplexní analýza

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top