Diofantická rovnice

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Diofantická rovnice (někdy též diofantovská) v matematice je neurčitá polynomiální rovnice, která dovoluje proměnným nabývat pouze hodnot z oboru celých čísel. Diofantovské problémy mají méně rovnic než neznámých proměnných a zahrnují nalezení celých čísel, která jsou řešením pro všechny rovnice soustavy. Řečeno techničtějším jazykem, definují algebraickou křivku, algebraický povrch nebo obecnější útvar, a hledají na něm body mřížky.

Slovo diofantické odkazuje k antickému matematikovi z 3. +more století, Diofantovi z Alexandrie v Egyptě, který takové rovnice studoval a byl také jedním z prvních matematiků, který zavedl symbolismus v algebře. Matematické studium diofantovských problémů započaté Diofantem se nyní nazývá „diofantovská analýza“. Lineární diofantovská rovnice je rovnicí dvou součtů monomů prvního nebo nultého řádu.

Zatímco jednotlivé rovnice představují svého druhu puzzle a byly mnohokrát zkoumány, formulace obecné teorie diofantovských rovnic byla získána až ve dvacátém století, později než teorie kvadratických forem.

Příklady diofantických rovnic

V následujících diofantických rovnicích jsou x, y a z neznámé, ostatní proměnné jsou dány.

* ax+by=k\,: Bézoutova rovnost, příklad lineární diofantovské rovnice. * x^n+y^n=z^n\,: Pro n = 2 existuje nekonečně mnoho řešení (x,y,z), pythagorejské trojice. +more Pro větší hodnoty n Velká Fermatova věta říká, že neexistuje žádné řešení pro kladná celá čísla x, y, z, které by splňovalo tuto rovnici. * x^2-ny^2=1\, (Pellova rovnice), pojmenovaná po anglickém matematikovi Johnu Pellovi. Původně byla studována Brahmaguptou v šestém století, a o mnoho později Fermatem. * \sum_{i=0}^n{a_i x^i y^{n-i}} = c, kde n \geq 3 a c \neq 0: Toto jsou Thueovy rovnice a mají obvykle řešení. * \frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}, neboli v polynomiálním tvaru 4xyz=n(xy+xz+yz)\,. Erdősova-Strausova domněnka zní, že pro každé kladné celé číslo n ≥ 2 existuje řešení kladných celých čísel x, y, a z.

Úloha vedoucí na diofantickou rovnici

Tři rybáři společně ulovili určité množství ryb a ulehli ke spánku. První se vzbudil a chtěl si odnést svůj podíl. +more Počet ryb ale nebyl dělitelný třemi, proto jednu rybu pustil zpět do vody. Vzal si třetinu zbývajícího počtu a odešel. Když se vzbudil druhý rybář, situace se opakovala. Jednu rybu pustil, vzal si třetinu a odešel. Totéž udělal třetí rybář. Otázka je, kolik bylo ryb. Řešení vede na následující rovnici, v níž x je počet ulovených ryb a y počet zbylých ryb.

: \left(\left(\left(x-1\right){2\over3}-1\right){2\over3}-1\right){2\over3}=y

Po úpravě dostáváme

: 8x=27y+38\,.

Když tuto úlohu ve škole řešil Paul Dirac, prohlásil, že rybáři chytili −2 ryby. Z hlediska úlohy je odpověď absurdní, ale toto číslo je řešením příslušné rovnice. +more Navíc pěkným, protože je jediné, při němž x=y. Nejmenší přirozené číslo x řešící tuto úlohu je 25 a každé další je o 27 větší, tedy 52, 79, 106… Prodloužením do záporných čísel vzniknou řešení −2, −29 atd. Později Dirac jako první předpověděl existenci antihmoty, když fyzikálně interpretoval podobně „absurdní“ řešení Schrödingerovy rovnice.

Širší kontext

K řešení diofantických rovnic se vztahuje 10. Hilbertův problém, který se ptal po existenci algoritmu, který dokáže rozhodnout, zda existuje řešení pro libovolnou diofantickou rovnici. +more Možnost existence takového algoritmu byla vyloučena Matijasevičovou větou v roce 1970. Jurij Vladimirovič Matijasevič ukázal, že již pro rovnice s více než devíti proměnnými nelze rozhodovací algoritmus najít. Wilesova metoda důkazu Velké Fermatovy věty ovšem naznačuje, že by měl existovat rozhodovací algoritmus pro diofantické úlohy o třech proměnných. Stále zůstává nezodpovězena otázka, jaký je nejnižší počet proměnných, pro který je existence řešení diofantické rovnice nerozhodnutelné.

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top