Hydroxidy

Technology
12 hours ago
8
4
2
Avatar
Author
Albert Flores

Hydroxidy jsou chemické sloučeniny, které obsahují hydroxidovou skupinu OH-. Jsou základními chemickými sloučeninami, které mají významný vliv na různé chemické a biologické procesy. V přírodě se vyskytují ve formě minerálů, jako například vápenec (Ca(OH)2) nebo magnetit (Fe(OH)2). Hydroxidy se také používají v průmyslu a v laboratoři jako zásady, katalyzátory, žíraviny nebo anodové materiály v elektrochemii. V této článku jsou popsány základní vlastnosti hydroxidů, jejich struktura, fyzikální a chemické vlastnosti a příklady jejich použití.

Hydroxidový aniont: tečky znamenají elektrony, čárka elektronový pár a znaménko v horním indexu záporný náboj Hydroxidy jsou chemické sloučeniny, které obsahují hydroxidový aniont OH− a kovový kationt (například Na+, K+, Ca2+, Fe3+, Mg2+) či amonný kationt p=+. Mezi skupinou OH− a kovem je iontová vazba.

Hydroxidy jsou nejběžnějšími zásadami (bázemi). Vytvářejí je zásadotvorné kovy především jako reakci svých oxidů s vodou.

Nejznámějšími jsou hydroxidy alkalických kovů a alkalických zemin (například NaOH - hydroxid sodný, KOH - hydroxid draselný, Ca(OH)2 - hydroxid vápenatý nebo Mg(OH)2 - hydroxid hořečnatý).

...
...
...
...
...
...
...
...
...
...
...
...
...
+more images (10)

Dělení hydroxidů podle rozpustnosti

Hydroxidy se dělí na ve vodě rozpustné a ve vodě nerozpustné. Rozpouštění hydroxidů ve vodě je exotermní děj, při kterém se uvolňuje teplo. Většina hydroxidů je hygroskopická.

* Rozpustné hydroxidy - alkalické kovy a kovy alkalických zemin (I. a II. +more skupina prvků) tvoří s vodou rozpustné hydroxidy a silně alkalické roztoky (například hydroxid sodný a hydroxid draselný). Slabé alkalické roztoky tvoří například hydroxid barnatý a hydroxid vápenatý. Jejich nasycené roztoky se nazývají barytová voda a vápenná voda. Také hydroxid amonný je ve vodě rozpustný a dokonce existuje pouze jako roztok. * Nerozpustné hydroxidy - ostatní kovy tvoří s vodou nerozpustné nebo méně rozpustné hydroxidy.

hydroxid lithný LiOHhydroxid hořečnatý Mg(OH)2
hydroxid sodný NaOHhydroxid cínatý Sn(OH)2
hydroxid draselný KOHhydroxid zinečnatý Zn(OH)2
hydroxid vápenatý Ca(OH)2hydroxid hlinitý Al(OH)3
hydroxid barnatý Ba(OH)2hydroxid olovnatý Pb(OH)2
hydroxid strontnatý Sr(OH)2hydroxid železitý Fe(OH)3
hydroxid amonný NH4OHhydroxid měďnatý Cu(OH)2

Disociace hydroxidů

Rozpustné hydroxidy disociují ve vodě na kovové a hydroxidové ionty. Tyto roztoky se nazývají alkalické roztoky nebo louhy. +more Jsou vždy zásadité, neboť mají pH větší než 7 a pOH naopak menší než 7. Zásaditost a kyselost se měří na stupnici pH (určuje koncentraci vodíkových kationtů H+ v roztoku) nebo na stupnici pOH (určuje koncentraci hydroxidových aniontů OH− v roztoku). Rozsah stupnice je od 0 do 14, neutrální roztoky (například voda) mají pH i pOH rovné 7.

Například disociační reakce hydroxidu sodného, hydroxidu vápenatého a amoniaku lze popsat těmito rovnicemi (dolní index (aq) znamená roztok):

\mathrm{NaOH \ \rightleftharpoons \ Na^+_{(aq)} + OH^-_{(aq)}}

\mathrm{Ca(OH)_2 \ \rightleftharpoons \ Ca^{2+}_{(aq)} + 2 \ OH^-_{(aq)}}

\mathrm{NH_3 + H_2O \ \rightleftharpoons \ NH_4^+ + OH^-}

Disociační reakce vody se nazývá autoionizace vody. Je to chemická reakce, během níž se dvě molekuly vody přemění na hydroxoniový kationt H3O+ a hydroxidový aniont OH−.

\mathrm{H_2O + H_2O \ \rightleftharpoons \ H_3O^+ + OH^-}

Příprava a výroba

V této tabulce jsou u jednotlivých skupin látek popsány postupy přípravy hydroxidy za laboratorních podmínek.

Skupina či látkaMožnosti výroby
Alkalické kovy1) Reakcí s vodou (vzniká vodík, velice exotermní reakce, větší kousky mohou explodovat. +more) 2) Reakce oxidu s vodou (rovněž exotermní, probíhá i se vzdušnou vlhkostí)
Amoniak1) Reakce s vodou 2) Reakce amonné soli s hydroxidem alkalických kovů (zejména s hydroxidem sodným)
Kovy alkalických zemin1) Reakce s vodou 2) Reakce oxidu s vodou (exotermní, příklad je zejména hašení vápna) 3) Reakce sloučeniny daného kovu s hydroxidem alkalických kovů (zejména s hydroxidem sodným)
Přechodné kovy a kovy1) Reakce oxidu kovu s vodou 2) Reakce kovu s vodou za přístupu kyslíku (vzniká oxid, dále probíhá reakce, viz bod 1. ) 3) Reakce sloučeniny kovu s hydroxidem sodným
.

Hydroxid sodný

Hydroxid sodný patří k nejdůležitějším hydroxidům a vyrábí se elektrolýzou solanky. Reakce probíhá takto:

* NaCl → Na+ + Cl− * Na+ + e− → Na0 * Cl− - e− → Cl0 Jelikož reakce probíhá ve vodném prostředí a sodík reaguje s vodou, probíhá reakce dále takto:

* 2 Na + 2 H2O → 2 NaOH + H2 Na katodě se neuvolňuje kovový sodík, ale vodík. Plynný chlór, který se uvolňuje na anodě nereaguje s vodou, a stejně jako vodík je odváděn jinam. +more Průmyslově se z něj pak vyrábí chlorovodík a následně kyselina chlorovodíková.

Hydroxid amonný

Zvláštní pozornost si zaslouží hydroxid amonný. Vyskytuje se pouze ve vodném roztoku a samovolně se rozkládá na vodu a amoniak. +more * NH3 + H2O ↔ NH3·H2O ↔ NH4OH.

Reakce hydroxidů

Hydroxidy reagují s kyselinami, tato reakce se nazývá neutralizace. Při této reakci vzniká sůl kyseliny a voda. +more Typickým příkladem je reakce kyseliny chlorovodíkové a hydroxidu sodného, dle rovnice: * NaOH + HCl → NaCl + H2O.

Nebo reakce hydroxidu draselného s kyselinou sírovou: * 2 KOH + H2SO4 → K2SO4 + 2H2O

Různé hydroxidy jsou různě reaktivní. Všechny hydroxidy reagují s oxidy nekovů a polokovů, příkladem je reakce se vzdušným oxidem uhličitým, podle rovnice:

2 NaOH + CO2 → Na2CO3 + H2O

Čisté hydroxidy alkalických kovů jsou tedy schopné reagovat i se sklem. Reakce probíhá docela pomalu, rychleji probíhá s roztaveným hydroxidem. +more Kvůli tomuto faktu se hydroxidy musí skladovat v plastových lahvích. Při reakci vzniká křemičitan kovu a voda, reakce probíhá takto:.

* 2NaOH + SiO2 → Na2SiO3 + H2O

Čím více je kov v Beketovově řadě kovů vpravo, tedy s vyšším elektrodovým potenciálem, tím méně je hydroxid stabilní a hůře vzniká. Kovy alkalických zemin se při zahřívání na vysokou teplotu rozkládá na oxid a vodu, dle rovnice:

* Mg(OH)2 -t→ MgO + H2O

Čím více je kov vpravo v Beketovově řadě kovů, tím nižší teplota je potřeba na rozpad. Kupříkladu hydroxid měďnatý (Cu(OH)2) potřebuje na rozklad jenom asi 75 °C.

Využití

Hydroxid sodný

Hydroxid sodný má široké použití v chemickém průmyslu (výroba mýdel a dalších povrchově aktivních látek, příprava dalších sloučenin sodíku, jako reakční složka při organických a anorganických syntézách), v potravinářském průmyslu (při zpracování tuků a olejů, ale také jako desinfekční činidlo pro vymývání strojů) nebo ve vodárenství při úpravách pitné vody. V domácnostech se dá použít při čištění odpadních potrubí, neboť je velmi žíravý. +more Po vhození několika peciček hydroxidu sodného do odpadu a zalití horkou vodou začne vařící roztok hydroxidu sodného leptat usazeniny v potrubí.

Hydroxid vápenatý

Hydroxid vápenatý (hašené vápno) se používá především ve stavebnictví jako součást malty, omítkových směsí a nátěrových hmot na stěny. Průmyslově se vyrábí reakcí oxidu vápenatého (pálené vápno) s vodou podle rovnice: * CaO + H2O → Ca(OH)2

Při tuhnutí reaguje se vzdušným oxidem uhličitým podle rovnice:

* Ca(OH)2 + CO2 → CaCO3 + H2O

Hydroxid hořečnatý

Hydroxid hořečnatý se používá ke korekcím kyselosti u některých potravin (převážně konzervované potraviny) a u krémů na pokožku. Pomáhá také udržovat barevnost výrobků. +more Je významným zdrojem hořčíku. Jeho suspenze s vodou je zásaditou a minerální součástí různých potravinových doplňků prodávaných v lékárnách. Používá se jako antacid při neutralizaci překyseleného žaludku.

Vzhled

Většina hydroxidů je bílá, zde jsou obrázky některých hydroxidů:

soubor:Hydroxid sodný. JPG|Hydroxid sodný NaOH soubor:Hydroxid železnatý. +morePNG|Hydroxid železnatý Fe(OH)2 soubor:Hydroxid zinečnatý. PNG|Hydroxid zinečnatý Zn(OH)2 soubor:Hydroxid olovnatý. PNG|Hydroxid olovnatý Pb(OH)2 soubor:Hydroxid nikelnatý. PNG|Hydroxid nikelnatý Ni(OH)2 soubor:Hydroxid hořečnatý. PNG|Hydroxid hořečnatý Mg(OH)2 soubor:Hydroxid hlinitý. PNG|Hydroxid hlinitý Al(OH)3 soubor:Hydroxid železitý. PNG|Hydroxid železitý Fe(OH)3 soubor:Hydroxid vápenatý. PNG|Hydroxid vápenatý Ca(OH)2 soubor:Hydroxid bismutitý. PNG|Hydroxid bismutitý Bi(OH)3 soubor:Cd(OH)2. png|Hydroxid kademnatý Cd(OH)2 soubor:LiOH. png|Hydroxid lithný LiOH.

Výskyt

Existuje několik nerostů, které jsou hydroxidy. Jejich vzorce jsou však zapisovány jako hydratované oxidy. +more Příkladem je zejména limonit (Fe2O3·nH2O či Fe(OH)3), či bauxit (Al2O3·nH2O či Al(OH)3). V běžném životě se můžeme setkat s hydroxidy jakožto s železnou rzí.

Hydroxid nebo kyselina

Některé látky obsahují hydroxidové skupiny, ale neřadí se mezi hydroxidy. Například hydroxidy halogenů, nekovů a polokovů jsou ve skutečnosti kyseliny. +more Tyto látky se chovají jako kyseliny a odštěpují kationt H+.

Některé hydroxidy se chovají jako kyseliny pouze částečně. Zejména hydroxid hlinitý je schopen reagovat s kovovým sodíkem za vzniku hlinitanu sodného.

Některé kovy tvoří hydroxidy i kyseliny, avšak v jiných oxidačních číslech. Vznikají tak například kyseliny jako je kyselina chromová, kyselina manganistá, kyselina rhenistá, kyselina wolframová, kyselina zlatitá, kyselina zlatná nebo kyselina osmičelá.

Související články

Zásady (chemie) * Kyseliny * pH * Disociace

Reference

Externí odkazy

Kategorie:Oxyanionty

5 min read
Share this post:
Like it 8

Leave a Comment

Please, enter your name.
Please, provide a valid email address.
Please, enter your comment.
Enjoy this post? Join Cesko.wiki
Don’t forget to share it
Top